Automatic Speech Emotion and Speaker Recognition based on Hybrid GMM and FFBNN
نویسندگان
چکیده
In this paper we present text dependent speaker recognition with an enhancement of detecting the emotion of the speaker prior using the hybrid FFBN and GMM methods. The emotional state of the speaker influences recognition system. Mel-frequency Cepstral Coefficient (MFCC) feature set is used for experimentation. To recognize the emotional state of a speaker Gaussian Mixture Model (GMM) is used in training phase and in testing phase Feed Forward Back Propagation Neural Network (FFBNN). Speech database consisting of 25 speakers recorded in five different emotional states: happy, angry, sad, surprise and neutral is used for experimentation. The results reveal that the emotional state of the speaker shows a significant impact on the accuracy of speaker recognition.
منابع مشابه
A Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملNatural-emotion GMM transformation algorithm for emotional speaker recognition
One of the largest challenges in speaker recognition is dealing with speaker-emotion variability problem. Nowadays, compensation techniques are the main solutions to this problem. In these methods, all kinds of speakers’ emotion speech should be elicited thus it is not user-friendly in the application. Therefore the basic problem is how to get the distribution of speakers’ emotion speech and ho...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014